最小二乘法拟合excel,电子表格最小二乘法拟合公式
1. 最小二乘法拟合公式
示例1斜率和Y轴截距 AB 1已知 y已知 x 210 394 452 563 公式说明(结果) =LINEST(A2:A5,B2:B5,,FALSE)返回斜率(2) =INDEX(LINEST(A2:A5,B2:B5,,FALSE),2)返回截距(1) 提示示例中的公式也可以以数组公式输入。在将公式复制到一张空白工作表的A7单元格后,选择以公式单元格开始的区域A7:B7。按F2,再按Ctrl+Shift+Enter。
2. 最小二乘法拟合公式y=a^+b^x
1,在需要的区间上取若干点 .
2,设所求直线为 ,利用最小二乘法求出 即可. 方法有多种,但结果一样。最便利的是代入统计学的公式中,分析和代数也有各自的方法.
3. 最小二乘法拟合公式k
最小二乘法公式是一个数学的公式,在数学上称为曲线拟合,此处所讲最小二乘法,专指线性回归方程!最小二乘法公式为b=y(平均)-a*x(平均)。
拓展资料:
曲线拟合俗称拉曲线,是一种把现有数据透过数学方法来代入一条数式的表示方式。科学和工程问题可以通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,我们往往希望得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合,这过程就叫做拟合。
4. 最小二乘法拟合公式r是什么
在统计学中对变量进行线行回归分析,采用最小二乘法进行参数估计时,R平方为回归平方和与总离差平方和的比值,表示总离差平方和中可以由回归平方和解释的比例,这一比例越大越好,模型越精确,回归效果越显著。R平方介于0~1之间,越接近1,回归拟合效果越好,一般认为超过0.8的模型拟合优度比较高。
r平方计算公式:
R^2=SSR/SST=∑(i=1→n)(yi^-y)^2/∑(i=1→n)(yi-y)^2。
5. 最小二乘法拟合公式excel
打开Excel,先将数据绘成线性图,然后在图表中添加趋势线,然后勾选:显示公式,就可以拟合出数据的公式了。 最小二乘法: (又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。 拟合: 对给定数据点{(Xi,Yi)}(i=0,1,…,m),在取定的函数类Φ 中,求p(x)∈Φ,使误差的平方和E^2最小,E^2=∑[p(Xi)-Yi]^2。从几何意义上讲,就是寻求与给定点 {(Xi,Yi)}(i=0,1,…,m)的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。
6. 最小二乘法拟合公式求相关系数
用polyfit函数,(用来多项式拟合的,是用最小二乘法)
举个例子
x=[90 91 92 93 94 95 96];
z=[70 122 144 152 174 196 202];
a=polyfit(x,z,1)
结果:
a =
1.0e+03 *
0.0205 -1.7551
1表示1次多项式(一次时就是直线,适用于你的情况)
a是多项式的系数向量,是从高次项往低次项排的,
如果想运用结果,比如想知道当x=97时z等于多少
那么有两种方法,
直接用系数
>> a(1)*97+a(2)
ans =
233.4286
或者用polyval函数
>> polyval(a,97)
ans =
233.4286
7. 最小二乘法拟合公式推导
打开Excel,先将数据绘成线性图,然后在图表中添加趋势线,然后勾选:显示公式,就可以拟合出数据的公式了。 最小二乘法: (又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。 拟合: 对给定数据点{(Xi,Yi)}(i=0,1,…,m),在取定的函数类Φ 中,求p(x)∈Φ,使误差的平方和E^2最小,E^2=∑[p(Xi)-Yi]^2。从几何意义上讲,就是寻求与给定点 {(Xi,Yi)}(i=0,1,…,m)的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。
8. 最小二乘法拟合公式并计算平方误差
最小二乘法,实际上是想让拟合的直线方程与实际的误差最小。由于误差有正有负,所以,如果用误差的和来作为指标,那最后的结果是零,指导意义不能满足要求。
如果用误差的绝对值来计算的话,那应该好一些,但由于函数计算中,绝对值的和的计算和分析是比较复杂的,也不易。所以,人们发明了用误差的平方来作为拟合的指标,由于平方总是正的,在统计计算中比较方便,所以误差的最小平方和(最小二乘法)就应运而生了
9. 最小二乘法拟合公式模拟
用vb编程的时候,需要将Text2(1到9)[纵坐标] 数组中的数据对Text1(1到9)[横坐标]拟合直线, 求得斜率,显示到图片框里面,并标出坐标刻度
10. 最小二乘法拟合公式例题
在command窗口输入这两个数组,在用:cftool打开拟合界面,按要求选择拟合数据,进行拟合