当前位置:首页经验技巧Excel经验excel技巧

贝塞尔函数excel表格怎么用

2024-09-26 15:58:48

1.数学应用—贝塞尔函数

贝塞尔函数 Bessel functions 利用柱坐标求解涉及在圆、球与圆柱内的势场的物理问题时出现的一类特殊函数。

又称标函数。用柱坐标解拉普拉斯方程时,用分离变量法可以得到贝塞尔方程: 贝塞尔方程 贝塞尔函数是贝塞尔方程的解,它们和其他函数组合成柱调和函数。

除初等函数外,在物理和工程中贝塞尔函数是最常用的函数,它们以19世纪德国天文学家F.W.贝塞尔的姓氏命名,他在1824年第一次描述过它们。贝塞尔函数最早出现在涉及如悬链振荡,长圆柱体冷却以及紧张膜振动的问题中。

贝塞尔函数的一族,也称第一类贝塞尔函数,记作Jn(x),用x的偶次幂的无穷和来定义,数 n称为贝塞尔函数的阶,它依赖于函数所要解决的问题。J0 (x)的图形像衰减的余弦曲线,J1(x)像衰减的正弦曲线(见图)。

第二类贝塞尔函数(又称诺伊曼函数),记作Yn(x),它由第一类贝塞尔函数的简单组合来定义。第三类贝塞尔函数(亦称汉克尔函数)定义为Hn=Jn±iYn,其中i为虚数,用n阶(正或负)贝塞尔函数可解称为贝塞尔方程的微分方程。

贝塞尔函数是数学上的一类特殊函数的总称。贝塞尔函数的几个正整数阶特例早在18世纪中叶就由瑞士数学家丹尼尔·伯努利在研究悬链振动时提出了,当时引起了数学界的兴趣。

丹尼尔的叔叔雅各布·伯努利,欧拉、拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。1817年,德国数学家贝塞尔在研究开普勒提出的三体引力系统的运动问题时,第一次系统地提出了贝塞尔函数的总体理论框架,后人以他的名字来命名了这种函数。

利用柱坐标求解涉及在圆、球与圆柱内的势场的物理问题时出现的一类特殊函数。又称标函数。

用柱坐标解拉普拉斯方程时,用到贝塞尔函数,它们和其他函数组合成柱调和函数。除初等函数外,在物理和工程中贝塞尔函数是最常用的函数,它们以19世纪德国天文学家F.W.贝塞尔的姓氏命名,他在1824年第一次描述过它们。

贝塞尔函数最早出现在涉及如悬链振荡,长圆柱体冷却以及紧张膜振动的问题中。贝塞尔函数的一族,也称第一类贝塞尔函数,记作Jn(x),用x的偶次幂的无穷和来定义,数 n称为贝塞尔函数的阶,它依赖于函数所要解决的问题。

J0 (x)的图形像衰减的余弦曲线,J1(x)像衰减的正弦曲线(见图)。第二类贝塞尔函数(又称诺伊曼函数),记作Yn(x)。

当n为非整数时,Yn(x)可以由第一类贝塞尔函数的简单组合来定义;当n为整数时,Yn(x)不能由第一类贝塞尔函数的简单组合得到,此时需要通过一个求极限过程来计算函数值。第三类贝塞尔函数(亦称汉克尔函数)定义为Hn=Jn±iYn,其中i为虚数,用n阶(正或负)贝塞尔函数可解称为贝塞尔方程的微分方程。

2.贝塞尔函数公式

贝塞尔函数

Bessel functions

利用柱坐标求解涉及在圆、球与圆柱内的势场的物理问题时出现的一类特殊函数。又称标函数。用柱坐标解拉普拉斯方程时,用到贝塞尔函数,它们和其他函数组合成柱调和函数。除初等函数外,在物理和工程中贝塞尔函数是最常用的函数,它们以19世纪德国天文学家F.W.贝塞尔的姓氏命名,他在1824年第一次描述过它们。贝塞尔函数最早出现在涉及如悬链振荡,长圆柱体冷却以及紧张膜振动的问题中。贝塞尔函数的一族,也称第一类贝塞尔函数,记作Jn(x),用x的偶次幂的无穷和来定义,数 n称为贝塞尔函数的阶,它依赖于函数所要解决的问题。J0 (x) 的图形像衰减的余弦曲线,J1(x)像衰减的正弦曲线( 见图 )。第二类贝塞尔函数( 又称诺伊曼函数 ),记作Yn(x),它由第一类贝塞尔函数的简单组合来定义。第三类贝塞尔函数(亦称汉克尔函数)定义为Hn=Jn±iYn,其中i为虚数,用n阶( 正或负 )贝塞尔函数可解称为贝塞尔方程的微分方程。

图片

3.如何使用EXCEL函数

EXCEL函数大全 数据库和清单管理函数 DAVERAGE 返回选定数据库项的平均值 DCOUNT 计算数据库中包含数字的单元格的个数 DCOUNTA 计算数据库中非空单元格的个数 DGET 从数据库中提取满足指定条件的单个记录 DMAX 返回选定数据库项中的最大值 DMIN 返回选定数据库项中的最小值 DPRODUCT 乘以特定字段(此字段中的记录为数据库中满足指定条件的记录)中的值 DSTDEV 根据数据库中选定项的示例估算标准偏差 DSTDEVP 根据数据库中选定项的样本总体计算标准偏差 DSUM 对数据库中满足条件的记录的字段列中的数字求和 DVAR 根据数据库中选定项的示例估算方差 DVARP 根据数据库中选定项的样本总体计算方差 GETPIVOTDATA 返回存储在数据透视表中的数据 日期和时间函数 DATE 返回特定时间的系列数 DATEDIF 计算两个日期之间的年、月、日数 DATEVALUE 将文本格式的日期转换为系列数 DAY 将系列数转换为月份中的日 DAYS360 按每年360天计算两个日期之间的天数 EDATE 返回在开始日期之前或之后指定月数的某个日期的系列数 EOMONTH 返回指定月份数之前或之后某月的最后一天的系列数 HOUR 将系列数转换为小时 MINUTE 将系列数转换为分钟 MONTH 将系列数转换为月 NETWORKDAYS 返回两个日期之间的完整工作日数 NOW 返回当前日期和时间的系列数 SECOND 将系列数转换为秒 TIME 返回特定时间的系列数 TIMEVALUE 将文本格式的时间转换为系列数 TODAY 返回当天日期的系列数 WEEKDAY 将系列数转换为星期 WORKDAY 返回指定工作日数之前或之后某日期的系列数 YEAR 将系列数转换为年 YEARFRAC 返回代表START_DATE(开始日期)和END_DATE(结束日期)之间天数的以年为单位的分数 DDE 和外部函数 CALL 调用动态链接库(DLL)或代码源中的过程 REGISTER.ID 返回已注册的指定DLL或代码源的注册ID SQL.REQUEST 连接外部数据源,并从工作表中运行查询,然后将结果作为数组返回,而无需进行宏编程。

有关CALL和REGISTER函数的其他信息 工程函数 BESSELI 返回经过修改的贝塞尔函数IN(X) BESSELJ 返回贝塞尔函数JN(X) BESSELK 返回经过修改的贝塞尔函数KN(X) BESSELY 返回贝塞尔函数YN(X) XLFCTBIN2DEC、BIN2DEC 将二进制数转换为十进制数 BIN2HEX 将二进制数转换为十六进制数 BIN2OCT 将二进制数转换为八进制数 COMPLEX 将实系数和虚系数转换为复数 CONVERT 将一种度量单位制中的数字转换为另一种度量单位制 DEC2BIN 将十进制数转换为二进制数 DEC2HEX 将十进制数转换为十六进制数 DEC2OCT 将十进制数转换为八进制数 DELTA 检测两个值是否相等 ERF 返回误差函数 ERFC 返回余误差函数 GESTEP 检测数字是否大于某个阈值 HEX2BIN 将十六进制数转换为二进制数 HEX2DEC 将十六进制数转换为十进制数 HEX2OCT 将十六进制数转换为八进制数 IMABS 返回复数的绝对值(模) IMAGINARY 返回复数的虚系数 IMARGUMENT 返回参数THETA,一个以弧度表示的角 IMCONJUGATE 返回复数的共轭复数 IMCOS 返回复数的余弦 IMDIV 返回两个复数的商 IMEXP 返回复数的指数 IMLN 返回复数的自然对数 IMLOG10 返回复数的常用对数 IMLOG2 返回复数的以2为底数的对数 IMPOWER 返回复数的整数幂 IMPRODUCT 返回两个复数的乘积 IMREAL 返回复数的实系数 IMSIN 返回复数的正弦 IMSQRT 返回复数的平方根 IMSUB 返回两个复数的差 IMSUM 返回两个复数的和 OCT2BIN 将八进制数转换为二进制数 OCT2DEC 将八进制数转换为十进制数 OCT2HEX 将八进制数转换为十六进制数 财务函数 ACCRINT 返回定期付息有价证券的应计利息 ACCRINTM 返回到期一次性付息有价证券的应计利息 AMORDEGRC 返回每个会计期间的折旧值 AMORLINC 返回每个会计期间的折旧值 COUPDAYBS 返回当前付息期内截止到成交日的天数 COUPDAYS 返回成交日所在的付息期的天数 COUPDAYSNC 返回从成交日到下一付息日之间的天数 COUPNCD 返回成交日过后的下一付息日的日期 COUPNUM 返回成交日和到期日之间的利息应付次数 COUPPCD 返回成交日之前的上一付息日的日期 CUMIPMT 返回两个期间之间累计偿还的利息数额 CUMPRINC 返回两个期间之间累计偿还的本金数额 DB 使用固定余额递减法,返回一笔资产在指定期间内的折旧值 DDB 使用双倍余额递减法或其他指定方法,返回一笔资产在指定期间内的折旧值 DISC 返回有价证券的贴现率 DOLLARDE 将按分数表示的价格转换为按小数表示的价格 DOLLARFR 将按小数表示的价格转换为按分数表示的价格 DURATION 返回定期付息有价证券的修正期限 EFFECT 返回实际年利率 FV 返回投资的未来值 FVSCHEDULE 基于一系列复利返回本金的未来值 INTRATE 返回一次性付息证券的利率 IPMT 返回给定期间内投资的利息偿还额 IRR 返回一组现金流的内部收益率 ISPMT 计算在投资的特定期间内支付的利息 MDURATION 返回假设面值0的有价证券的MACAULEY修正期限 MIRR 返回正负现金流。

4.excel里quartile函数怎么用

需要工具 WPS原因:工作需要函数介绍(功能说明,语法,示例) 1.功能说明 QUARTILE函数是返回数据集的四分位数。

四分位数通常用于在销售额和测量数据中对总体进行分组。例如,可以使用函数 QUARTILE 求得总体中前 25% 的收入值。

2.语法 QUARTILE(array,quart) Array 需要求得四分位数值的数组或数字型单元格区域。 Quart 决定返回哪一个四分位值。

如果qurart等于 函数 QUARTILE 返回 0 最小值 1 第一个四分位数(第 25 个百分点值) 2 中分位数(第 50 个百分点值) 3 第三个四分位数(第 75 个百分点值) 4 最大值 说明 若数组为空,则 QUARTILE 返回错误值 #NUM。若 quart < 0 或 quart > 4,则 QUARTILE 返回错误值 #NUM。

若 quart 不为整数,将被截尾取整。当 quart 分别等于 0、2 和 4 时,函数 MIN、MEDIAN 和 MAX 返回的值与函数 QUARTILE 返回的值相同。

4.示例 如果您将示例复制到空白工作表中,可能会更易于理解该示例。 A 1 数据 2 19 3 12 4 9 5 7 6 6 7 3 8 3 9 2 12 公式 说明(结果) 13 =QUARTILE(A2:A9,1) 上述数据的第一个四分位数(第 25 个百分点值)(3) 4.注意事项:一定要遵循函数语法。

5.球贝塞尔函数的求解方法 (高分)

贝塞尔函数是贝塞尔方程的解,它们和其他函数组合成柱调和函数。

除初等函数外,在物理和工程中贝塞尔函数是最常用的函数,它们以19世纪德国天文学家F.W.贝塞尔的姓氏命名,他在1824年第一次描述过它们。贝塞尔函数最早出现在涉及如悬链振荡,长圆柱体冷却以及紧张膜振动的问题中。

贝塞尔函数的一族,也称第一类贝塞尔函数,记作Jn(x),用x的偶次幂的无穷和来定义,数 n称为贝塞尔函数的阶,它依赖于函数所要解决的问题。J0 (x)的图形像衰减的余弦曲线,J1(x)像衰减的正弦曲线(见图)。

第二类贝塞尔函数(又称诺伊曼函数),记作Yn(x),它由第一类贝塞尔函数的简单组合来定义。第三类贝塞尔函数(亦称汉克尔函数)定义为Hn=Jn±iYn,其中i为虚数,用n阶(正或负)贝塞尔函数可解称为贝塞尔方程的微分方程。


电脑版

免责声明:本站信息来自网络收集及网友投稿,仅供参考,如果有错误请反馈给我们更正,对文中内容的真实性和完整性本站不提供任何保证,不承但任何责任,谢谢您的合作。
版权所有:五学知识网 Copyright © 2015-2024 All Rights Reserved .